Software System for the Mars 2020
Mission Sampling
and Caching Testbeds

Kyle Edelberg, Paul Backes, Jeffrey Biesiadecki,

Sawyer Brooks, Daniel Helmick, Won Kim, Todd

Litwin, Brandon Metz, Jason Reid, Allen Sirota,
Wyatt Ubellacker, Peter Vieira

Jet Propulsion Laboratory
@ California Institute of Technology March 9, 2018

Background - Mars 2020 Rover Mission

Objective: Address high-priority science goals for Mars exploration

https://mars.nasa.gov/mars2020/mission/overview/

* One objective is to collect sample cores and set them aside on the surface in a
“cache” for potential subsequent retrieval

* This capability is to be achieved via the Sampling and Caching Subsystem
(SCS), which is currently under development

Jet Propulsion Laboratory 1
California Institute of Technology

Background: Sample Caching Subsystem (SCS)

Y . N OOpy
Bit Carousel
(part of ACA)

—

/ P
Caching Assembly

—
o mOF

Handlir

Robotic Arm]

SR

Adaptive Caching

Assembly (ACA)
(internal to Rover)

Turret

* Coring drill

*+ SHERLOC /WATSON Instrument
* PIXL Instrument

http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_183291.pdf

Jet Propulsion Laboratory 5
California Institute of Technology

Outline

1. Goals of this work

1. The CASAH software system

1. Supported testbeds

1. Hardware-software integration

2. Deployment, testing, and lessons learned

1. What next?

Jet Propulsion Laboratory 3
California Institute of Technology

Testbed Software Objectives

1. Enable repeatable, high throughput testing of prototype hardware
across a suite of testbeds.

1. Provide a light-weight framework for rapid development of relevant
algorithms that can be tested on real hardware and inform flight
software development

1. Allow for non-developers to operate the testbeds.
1. Collect data products that can be easily parsed and archived.

1. Provide robust fault protection to avoid hardware damage.

Jet Propulsion Laboratory
California Institute of Technology

Software Solution

 Why not just use JPL Rover Flight Software (FSW)?
— Long development timeline due to rigorous FSW standards
— Scope does not encompass all testbed objectives
— Operational complexity is high

* Why not use a commercial solution like LabVIEW?
— LabVIEW is designed to operate a wide variety of hardware at a low level
— It does not scale well to high-level algorithms and system level capabilities
— Many components are black-boxes
— Itis not relevant to FSW because it is so fundamentally different

* Our solution: Controls and Autonomy for Sample Acquisition and Handling
(CASAH)
— Implementation of the Intelligent Robotic Systems Architecture (IRSA)

— IRSA mimics JPL Rover Flight Software in the following ways:
1. System is divided into modules, which communicate via message passing
2. Each module is ‘owned’ by a single developer
3. Operator interface to each module is explicitly defined by a command dictionary

— CASAH primarily coded in C language, which is the same as FSW

Jet Propulsion Laboratory
California Institute of Technology

Controls and Autonomy for Sample Acquisition and Handling

(CASAH)
* Development began in January 2014 Ve o Y /" Avionics O\
by a team of three
GUIs
— First deployment in May 2014 Co'r\'\/ltcrjtt:)cljlgrs
 Development has continued to CASAH
present day, with team size growing \ A J
to roughly five L= =EtheAT o | Digital /O
— To date, CASAH has supported 10 " hardware Ana.ﬁ‘g /0
testbeds and 1400+ tests
— Test data has provided invaluable Acuators | le
feedback to hardware and someore Power Supply
software teams ! Vi _ -
— Flight-relevant algorithms have Context Diagram for CASAH
been developed, iterated, and
tested

Jet Propulsion Laboratory
California Institute of Technology

e

CASAH Components

User Interface Modules

a Middleware\

CMD REMOTE TLM LAUNCH Autotools
Behavior Modules 50-100Hz RSAP IPC
ARM DRILL ACA
CMDGEN
Hardware Interface 1000Hz
Other
MOT Libraries
N J/

Jet Propulsion Laboratory
California Institute of Technology

Supporting Testbeds with CASAH

Jet Propulsion Laboratory
California Institute of Technology

e 10 testbeds, each with different combination
of SCS components and distinct objectives

e How do we develop CASAH to support
different testbeds?
— CASAH is a single repository
— Modules have testbed configuration files
— Testbed is specified at build time

Top left: Arm and drill (ambient)

Top right: Arm and drill (thermal/vacuum)
Bottom left: Arm docking

Bottom right: ACA end effector

CASAH Development and Hardware-Software Integration

/ Phase I. Initial Development \ / Phase Il. Partial Integration \

Create Testbed Configuration Tune Motors

Develop / Modify Module(s) % Setup CASAH for Deployment

Test Functionality Offline Test Low-Level Functionality

v

/ Phase IV. Maintenance \ / Phase Ill. Full Integration

~

Fix bugs Test Capabilities (e.g., coring)
Add new features e Tune / Tweak Algorithms
Advance capabilities Train Operators

A= ~

=4

Jet Propulsion Laboratory
California Institute of Technology

This process grew
organically

Tight coupling of
software-hardware
teams before and
during this process
critical for success

Hardware-Software Integration: A Note About Avionics

* CASAH supports only EtherCAT devices
* Avionics are standardized across testbeds (BlueBox)
* Resulting software is maintainable and system debugging is simplified

What is in a blue box?

e COTS motor controllers (EImo Gold
Whistles)

e COTS I/O modules (Beckhoffs)

* Power supply

 USB hub

CASAH developent station

Jet Propulsion Laboratory 10
California Institute of Technology

Results — Testing Throughput

Testbed Hardware Period Number of Tests
Components
1) Boundary Conditions Testbed Robotic Arm, | 08/2014-| 93

Coring Drill 03/2015

2) Percussion Efficacy and Comminution | Coring Drill 02/2015- | 426
Active

3) Environmental Development Testbed Robotic Arm, | 04/2015-| 282
Coring Drill Active

4) Ambient Robotic Coring Robotic Arm, | 07/2015-| 136
Coring Drill 05/2016

5) Tube Manipulation Testbed ACA (Linear | 08/2015-| 105
actuator only) | 08/2016

6) Docking Testbed Robotic Arm 06/2016- | 41

Active

7) Surtace Prep Operations Testbed Coring drill, | 11/2016- | 85
gas Dust | Active
Removal Tool

8) Single Station Testbed ACA (Linear | 03/2017-| 159

actuator and | Active
end-effector

only)

9) Multi Station Testbed ACA (no bit | 04/2017-| 21
carousel or | Active
holder)

10) Percussion Mechanism Testbed Coring drill | 08/2017- | 45
(percussion Active
only)

Number of tests ran on each SCS testbed.
Resulting data products have proved invaluable.

Jet Propulsion Laboratory 11
California Institute of Technology

Results — Algorithm Transfer to FSW

* ACA, ARM, and DRILL modules are
now under development in FSW

* Algorithms developed and tested in
CASAH are being re-written into FSW

 Example: DRILL Seek Surface

— Concept inspired by results seen during
testing

— Algorithm rapidly implemented and
rolled into testing with CASAH on all
testbeds with coring drills

— With proven maturity, algorithm is now
being coded into the DRILL module in
FSW

Jet Propulsion Laboratory 19
California Institute of Technology

(Stop) (1dle b
° > J
1 J L. /
7
Seek Surface /
Contact)
Y <
\ J
force > 20N
v
(Apply WOB h
Fault
u ‘ ’
L W,
iforce = 60N
(Backoff)
L /.\ v,
count =38 count< 8

-~

| (Finish) (Rotate Spindle
N S - j

Example algorithm: DRILL_SEEK_SURFACE; Developed
in CASAH, currently being coded into Mars 2020 FSW

... But Nothing is Perfect

CASAH Deployment: Select issues and resolutions

Date ‘ Issue

‘ Resolution

08/2014

03/2015

06/2015

07/2015

07/2015

08/2015

10/2015

11/2015

05/2016

08/2016

MOT timer slip during force control

Some uncontrolled motion would
occur when E-stop pressed

Separate branches for each testbed
infeasible for developers

MOT timer slip during graphics
processing

Externals versions not being man-
aged or tracked

Hard drives getting full on opera-
tion computers

Could not use Beckhoff module that
had digital inputs and outputs

Still getting timer slips in MOT pro-
cess

MOT would not shut down

Testbed operations computer kept
locking up

Found that when DRILL was running force-control, MOT would often
overrun its loop timer. Found that MOT was printing continuously at each
request it received from DRILL at 100Hz. Modified MOT’s logic to only
print on first motion request.

This affected a robotic arm for a testbed. If moving when the E-stop was
pressed, the arm would fall under gravity a small amount before brakes
closed. Determined to be a hardware limitation, but required adding a "soft’
E-stop feature, whereby a physical E-stop would toggle a digital input that
CASAH would read and use to initiate a smooth motion ramp-down.

Created testbed configuration files and integrated with build process.
Changed CASAH to consist of single, unified master branch.

Found that Nvidia graphics driver was clashing with MOT process at the
OS level. Selected alternate graphics card with specific open-source driver
that eliminated the clash. Retrofitted all computers with this card, and to
ensure correct driver version started the master hard drive cloning system.

Moved all externals from SVN to git on JPL’s GitHub. Changed CASAH to
pull in specific tag numbers of all externals via a version-controlled script.

Added notification to alert operator that hard disk is getting full. Dropped
MOT’s data logging rate for MOT and behavior modules to 1Hz when no
motors have been active for more than 60 seconds.

A Beckhoff module that had both inputs and outputs did not work with our
EtherCAT drivers. Found bug in driver design, requiring major overhaul.
Updated driver stack, performed significant testing, then switched CASAH
to support new design.

By tracing where timer slip was occurring, found fflush in several parts of
low-level message printing. Added option to disable fflush, setting default
to disable it for all CASAH modules.

Determined cause was persistent fault on the motor controller inhibiting
MOT’s state machine from allowing it to terminate. Added persistence
counter and modified MOT"s shutdown logic accordingly.

Found that multiple instantiations of telemetry display were running. Found
that CASAH script used to start the display was not checking if instance
was already running in the background, which could happen if not closed
properly. Updated script to alert operator if display is already running when
they try to start it.

Jet Propulsion Laboratory
California Institute of Technology

13

Summary and Lessons Learned

e Direct porting of code from testbed to FSW would impose harsh constraints on
testbeds; direct porting of algorithms is a win-win

* Mimicking FSW architecture by implementing IRSA maintains relevancy

— Behavior modules in CASAH are owned by the same people writing them in FSW, and functionality is
1:1 mapping between the two code bases

— Command dictionary and sequencing enables repeatable, high throughput testing. Generated data
products are essential for system development.

— Message passing between modules works effectively for time-critical applications
e Early and continuous hardware-software integration is critical for system of this
complexity
 Keeping code clean and lightweight pays off:

— Explicitly restrict supported hardware
— Re-write application level code often
— Avoid the temptation to chase the ‘perfect’ software system which never needs modification

Please refer to paper for full list of specific, technical lessons learned

Jet Propulsion Laboratory
California Institute of Technology

e

Looking Ahead

For Mars 2020 SCS S/W development, focus is now Flight Software
— We have developed a system which enables us to directly test SCS FSW

modules with Blue Boxes; allows for direct comparison to CASAH performance
CASAH itself is now in maintenance phase

For testbeds on new projects

Continue to implement IRSA architecture
Bulk of CASAH middleware will likely be reused, but application code rewritten

Lessons learned from CASAH have been captured and will inform new
implementation

We continue to monitor the Robot Operating System (ROS) 2.0 for potential
viability

Jet Propulsion Laboratory
California Institute of Technology

Thank you

Questions?

Jet Propulsion Laboratory 16
California Institute of Technology

Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States Government or
the Jet Propulsion Laboratory, California Institute of Technology.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Jet Propulsion Laboratory 17
California Institute of Technology

